Protein-protein, protein-RNA and protein-lipid interactions of signal-recognition particle components in the hyperthermoacidophilic archaeon Acidianus ambivalens.
نویسنده
چکیده
The signal-recognition particle (SRP) of one of the most acidophilic and hyperthermophilic archaeal cells, Acidianus ambivalens, and its putative receptor component, FtsY (prokaryotic SRP receptor), were investigated in detail. A. ambivalens Ffh (fifty-four-homologous protein) was shown to be a soluble protein with strong affinity to membranes. In its membrane-residing form, Ffh was extracted from plasma membranes with chaotropic agents like urea, but not with agents diminishing electrostatic interactions. Using unilamellar tetraether phospholipid vesicles, both Ffh and FtsY associate independently from each other in the absence of other factors, suggesting an equilibrium of soluble and membrane-bound protein forms under in vivo conditions. The Ffh protein precipitated from cytosolic cell supernatants with anti-Ffh antibodies, together with an 7 S-alike SRP-RNA, suggesting a stable core ribonucleoprotein composed of both components under native conditions. The SRP RNA of A. ambivalens depicted a size of about 309 nucleotides like the SRP RNA of the related organism Sulfolobus acidocaldarius. A stable heterodimeric complex composed of Ffh and FtsY was absent in cytosolic supernatants, indicating a transiently formed complex during archaeal SRP targeting. The FtsY protein precipitated in cytosolic supernatants with anti-FtsY antisera as a homomeric protein lacking accessory protein components. However, under in vitro conditions, recombinantly generated Ffh and FtsY associate in a nucleotide-independent manner, supporting a structural receptor model with two interacting apoproteins.
منابع مشابه
Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens.
A sulfur reductase (SR) and a hydrogenase were purified from solubilized membrane fractions of anaerobically grown cells of the sulfur-dependent archaeon Acidianus ambivalens and the corresponding genes were sequenced. The SR reduced elemental sulfur with hydrogen as electron donor [45 U (mg protein)(-1)] in the presence of hydrogenase and either 2,3-dimethylnaphthoquinone (DMN) or cytochrome c...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملReconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii.
The signal recognition particle (SRP) is a ribonucleoprotein complex involved in the recognition and targeting of nascent extracytoplasmic proteins in all three domains of life. In Archaea, SRP contains 7S RNA like its eukaryal counterpart, yet only includes two of the six protein subunits found in the eukaryal complex. To further our understanding of the archaeal SRP, 7S RNA, SRP19 and SRP54 o...
متن کاملPurification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملThe sulphur oxygenase reductase from Acidianus ambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre.
The SOR (sulphur oxygenase reductase) is the initial enzyme in the sulphur-oxidation pathway of Acidianus ambivalens. Expression of the sor gene in Escherichia coli resulted in active, soluble SOR and in inclusion bodies from which active SOR could be refolded as long as ferric ions were present in the refolding solution. Wild-type, recombinant and refolded SOR possessed indistinguishable prope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 374 Pt 1 شماره
صفحات -
تاریخ انتشار 2003